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LETTER TO THE EDITOR 

Mean field renormalisation group for the spin-; anisotropic 
Heisenberg model 

J A Plascakt 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, UK 

Received 3 May 1984 

Abstract. The mean field renormalisation group approach is applied to the spin-4 anisotropic 
Heisenberg model. The critical temperature and the critical exponent are obtained as a 
function of the anisotropy for the two-dimensional model on square, triangular, and 
hexagonal lattices. The three-dimensional model on a simple cubic lattice is also analysed. 

The mean field renormalisation group (MFRG) method has been recently proposed by 
Indekeu et a1 (1982) for computing critical properties of lattice spin systems. It is 
based on the comparison of the behaviour of two finite systems (clusters) of different 
sizes N, N’. For the two systems one computes the magnetisation per spin m,(K,  b) 
and m N , ( K ’ ,  b’) ,  where b and b’, assumed to be very small, are a symmetry breaking 
boundary condition (mean field) acting at the boundary of the N- and NI-spin clusters 
respectively ( N I <  N). By imposing a scaling relation of the form m N , ( K ’ ,  b ’ )=  
ymN ( K ,  b) between such approximate magnetisations and assuming a similar scaling 
relation between the parameters b and b’ one gets 

amN,(K’,  O)/ab’=am,(K, O)/ab, (1) 

which is independent of ’y. From equation ( l ) ,  which is interpreted as a renormalisation 
recursion relation between the coupling constants K and K’ for the two rescaled 
systems, critical fixed points K *  are extracted. The critical exponent of the correlation 
length, y,  can also be obtained by computing 

where I = ( N /  N‘)”d  is the rescaling factor and d is the dimensionality of the system. 
The MFRG approach summarised above has been applied to a number of systems: 

classical and quantum pure spin systems (Indekeu et al 1982); classical random systems 
including the spin glass (Droz et al 1982); geometric phase transitions (De’Bell 1983); 
the triangular Ising antiferromagnet (Slotte 1984) and the disordered transverse Ising 
model (Plascak 1984). In several cases, quite good results are obtained using just the 
simplest choice for the clusters namely, one- and two-spin clusters respectively. 

t Permanent address: Departamento de Fisica, Universidade Federal de Minas Gerais, CP 702, 30000 Belo 
Horizonte, Brazil. 
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In this letter we study the spin-f anisotropic Heisenberg model described by the 
Hamiltonian 

where 77 ranges from 0 (Ising limit) to 1 (isotropic Heisenberg limit), J is the nearest 
neighbour exchange interaction, ui are Pauli spin matrices, and the sum runs over 
sites on a &dimensional lattice. This model has been recently treated by using a real 
space renormalisation group procedure (Suzuki and Takano 1979, Stinchcombe 198 1, 
Caride et a1 1983). It has been shown that the critical temperature T, of the ferromag- 
netic transition decreases as a function of the anisotropy. In particular, in the isotropic 
Heisenberg limit T, vanishes for the two-dimensional model while, for the three- 
dimensional model T, remains finite. Moreover, the vanishing of T, for the two- 
dimensional model has been proved to be an exact result (Mermin and Wagner 1966). 

In order to apply the MFRG approach to the model (3) we consider herein clusters 
up to the size where an analytical treatment can be done without great difficulty. The 
two-dimensional model on square, triangular, and hexagonal lattices, as well as the 
three-dimensional model on a simple cubic lattice, can then be treated by using the 
simple clusters shown in figure 1. 

N.1 2 3 4 

Figure 1. Clusters used in the present calculation. The spins are represented by the circles. 

It is clear that, from equation ( 1 )  alone, one cannot determine the complete 
renormalisation flow diagram in the parameter space of the Hamiltonian (3) namely, 
K = J / k B T  and 7. One can, however, from equations ( 1 )  and (2), obtain the critical 
temperature, as well as estimates of the critical exponent y as a function of the 
anisotropy. As an example, we give below the equivalent of equations ( 1 )  and (2) in 
the case where N ’  = 1 and N = 2: 

cK’  = 2( c - 1)K/( 1 + e-ZK cosh 2K77), 

l y  = 1 + [ c K  e-2K(cosh 2K77 - 77 sinh 2K77)/(c-  1)IK*, 
(4) 

( 5 )  

where K* is the fixed point solution of equation (4) for a given value of 77 and c is 
the coordination number of the particular lattice considered. Similar expressions can 
be obtained by using the bigger clusters of figure 1. 

Figure 2 shows the critical temperature and the critical exponent as a function of 
the anisotropy for the two-dimensional model on a square lattice. It can be seen that 
an improvement is achieved by increasing the size of the clusters. In the Ising limit, 
the best values for the critical temperature and critical exponent (with N ’ = 2  and 
N = 4) are kB T,/ J = 2.70 and y = 0.78 respectively, which should be compared with 
the exact values kBTc/J = 2.27 and y = 1.0. In the isotropic Heisenberg limit one has, 
in both cases, T, = 0 and y = 0 which are the exact results (Mermin and Wagner 1966, 
Polyakov 1975). The continuous variation of y with the anisotropy is a consequence 
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Figure 2. Critical temperature kBTJJ (full curve) 
and critical exponent y (broken curve) as a function 
of the anisotropy for the two-dimensional model on 
a square lattice. a, N' = 1 and N = 2. b, N' = 2 and 
N=4 .  
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Figure 3. Critical temperature kBTJJ (full curve) 
and critical exponent y (broken curve) as a function 
of the anisotropy for the two-dimensional model on 
a triangular lattice. a, N' = 1 and N = 2. b, N' = 2 
and N = 3 .  

of having only one recursion relation for the parameters of the system. However, the 
crossover from the Ising model to the isotropic Heisenberg model is apparent in this 
figure. One can then note that the present approach is capable of giving, in a single 
scheme, quite good results for the critical properties of the spin-4 anisotropic Heisenberg 
model on a square lattice. 

Other types of lattice can also be treated within the present formalism by just 
taking into account properly the effects of the boundary conditions on each cluster. 
Figure 3 shows the critical temperature and the critical exponent as a function of the 
anisotropy for the two-dimensional model on a triangular lattice. An improvement is 
again achieved by considering clusters of bigger sizes. The best values in the Ising 
limit are kBT,/J = 4.56 and y = 0.8 1 which should be compared with the exact results 
kB T,/ J = 3.64 and y = 1 .O. In the isotropic Heisenberg limit the critical temperature 
and the critical exponent remain finite. However, by increasing the size of the clusters 
one can note that: (i)  the cross-over between the Ising and isotropic Heisenberg models 
is clearly more pronounced and (ii) T, and y tend to their exact values (zero). 

The results for the two-dimensional model on an hexagonal lattice are shown in 
figure 4 in the case where N' = I and N = 2. In the Ising limit one has kB Tc/ J = 1.82 
and y = 0.70. Although the critical temperature goes to zero as 7)  + 1, as expected, 
some spurious results are obtained in the vicinity of the isotropic Heisenberg limit: 
for r) d 1, dT,/dr) is finite and the critical exponent reaches a constant value y=O.28. 
Moreover, at r )  = 1 equation (4) leads to 

(6) 

where T ' =  K'-'  and T =  K - ' .  From (6) one has y, =0.34. In this case, as well as for 
the model on a triangular lattice, the clusters are still too simple to give a good 
description of the model in the isotropic Heisenberg limit. 

Finally, the present approach can easily be extended to the three-dimensional 
model. The results are shown in figure 5 .  The best values of the critical temperature 
and critical exponent in the Ising limit are kB Tc/ J = 4.86 and y = 0.79 which should 
be compared with series expansions results kB Tc/J = 4.67 and y = 1.59 (Domb 1974). 
In the isotropic Heisenberg limit one has kBTc/ J = 3.64 and y = 0.59. The real space 

7' = 97 8 ,  
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Figure 4. Critical temperature KBT, /J  (full curve) 
and critical exponent y (broken curve) as a function 
of the anisotropy for the two-dimensional model on 
a hexagonal lattice. In this case N' = 1 and N = 2. 

Figure 5. Critical temperature K,T,/J (full curve) 
and critical exponent y (broken curve) as a function 
of the anisotropy for the three-dimensional model. 
a, N'= 1 and N = 2. b, N' = 2 and N = 4. 

renormalisation group procedure by Stinchcombe (1981) gives, in this limit, kBTJ J = 
2.91 and y = 0.71. One can note from figure 5 that only a slight improvement is obtained 
in this case by increasing the size of the clusters. 
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